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Reviews

I Definition 7.5 Let G be a set of real-valued functions defined on Rd . We say that
G has solution set components bound B if for any 1 ≤ k ≤ d and any
{f1, . . . fk} ⊆ G that has regular zero-set intersetions, we have

CC
( k⋂

i=1

{a ∈ Rd : fi (a) = 0}
)
≤ B.

I Theorem 7.6 Suppose that F is a class of real-valued functions defined on
Rd ×X , and that H is a k-combination of sgn(F ). If F is closed under addition of
constants, has solution set components bound B, and functions in F are Cd in
their parameters, then

ΠH(m) ≤ B
d∑

i=0

(mk

i

)
≤ B

( emk

d

)d
,

for m ≥ d/k.



8.2 Function Classes that are Polynomial in their Parameters

I Consider classes of functions that can be expressed as boolean combinations of
thresholded real-valued functions, each of which is polynomial in its parameters.

I Lemma 8.1 Suppose f : Rd → R is a polynomial of degree l . Then the number of
connected components of {a ∈ Rd : f (a) = 0} is no more than ld−1(l + 2).

I Corollary 8.2 For l ∈ N, the set of degree l polynomials defined on Rd has
solution set components bound B = 2(2l)d .



I Theorem 8.3 Let F be a class of functions mapping from Rd × X to R so that,
for all x ∈ X and f ∈ F , the function a 7→ f (a, x) is a polynomial on Rd of degree
no more than l . Suppose that H is a k-combination of sgn(F ). Then if m ≥ d/k,

ΠH(m) ≤ 2
(2emkl

d

)d
,

and hence VCdim(H) ≤ 2d log2(12kl).



I Theorem 8.4 Suppose h is a function from Rd × Rn to {0, 1} and let

H = {x 7→ h(a, x) : a ∈ Rd}

be the class determined by h. Suppose that h can be compoted by an algorithm
that takes as input the pair (a, x) ∈ Rd × Rn and returns h(a, x) after no more
than t operations of the following types:

I the arithmetic operations +,−,×, and / on real numbers,
I jumps conditioned on >,≥, <,≤,=, and 6= comparisions of real numbers, and
I output 0 or 1.

Then VCdim(H) ≤ 4d(t + 2).

I Theorem 8.5 For all d , t ≥ 1, there is a class H of functions, parametrized by d
real numbers, that can be computed in time O(t) using the model of
computation defined in Thoerem 8.4, and that has VCdim(H) ≥ dt.



8.3 Piecewise-Polynomial Networks

I Theorem 8.6 Suppose N is a feed-forward linear threshold network with a total of
W weights, and let H be the class of functions computed by this network. Then
VCdim(H) = O(W 2).

I This theorem can easily be generalized to network with piecewise-polynomial
activation functions. A piecewise-polynomial function f : R→ R can be written
as f (α) =

∑p
i=1 1A(i)(α)fi (α), where A(1), . . . ,A(p) are disjoint real intervals

whose union is R, and f1, . . . , fp are polynomials. Define the degree of f as the
largest degree of the polynomials fi .



I Theorem 8.7 Suppose N is a feed-forward network with a total of W weights and
k computation units, in which the output unit is a linear threshold unit and every
other computation unit has a piecewise-polynomial activation function with p
pieces and degree no more than l . Then, if H is the class of functions computed
by N, VCdim(H) = O(W (W + kl log2 p)).



I Theorem 8.8 Suppose N is a feed-forward network of the form described in
Theorem 8.7, with W weights, k computation units, and all non-output units
having piecewise-polynomial activation functions with p pieces and degree no
more than l . Suppose in addition that the computation units in the network are
arranged in L layers, so that each unit has connections only from units in earlier
layers. Then if H is the class of functions computed by N,

ΠH(m) ≤ 2L(2emkp(l + 1)L−1)WL,

and
VCdim(H) ≤ 2WL log2(4WLpk/ ln 2) + 2WL2 log2(l + 1) + 2L.

For fixed p, l , VCdim(H) = O(WL log2 W + WL2).



I Theorem 8.9 Suppose s : R→ R has the following properties:
1. limα→∞ s(α) = 1 and limα→−∞ s(α) = 0, and
2. s is differentiable at some point α0 ∈ R, with s′(α0) 6= 0.

For any L ≥ 1 and W ≥ 10L− 14, there is a feed-forward network with L layers
and a total of W parameters, where every computation unit but the output unit
has activation function s, the output unit being a linear threshold unit, and for
which the set H of functions computed by the network has

VCdim(H) ≥
⌊L

2

⌋⌊W
2

⌋



8.4 Standard Sigmoid Networks
Discrete inputs and bounded fan-in

I Consider networks with the standard sigmoid activation, σ(α) = 1/(1 + e−α).

I We define the fan-in of a computation unit to be the number of input units or
computation units that feed into it.

I Theorem 8.11 Consider a two-layer feed-forward network with input domain
X = {−D,−D + 1, . . . ,D}n (for D ∈ N) and k first-layer computation units,
each with the standard sigmoid activation function. Let W be the total number
of parameters in the network, and suppose that the fan-in of each first-layer unit
is no more than N. Then the class H of functions computed by this network has
VCdim(H) ≤ 2W log2(60ND).



I Theorem 8.12 Consider a two-layer feed-forward linear threshold network that has
W parameters and whose first-layer units have fan-in no more than N. If H is the
set of functions computed by this network on binary inputs, then
VCdim(H) ≤ 2W log2(60N). Furthermore, there is a constant c s.t. for all W
there is a network with W parameters that has VCdim(H) ≥ cW .



General standard sigmoid networks

I Theorem 8.13 Let H be the set of functions computed by a feed-forward network
with W parameters and k computation units, in which each computation unit
other than the output unit has the standard sigmoid activation function (the
output unit being a linear threshold unit). Then

ΠH(m) ≤ 2(Wk)2/2(18Wk2)5Wk
( em
W

)W
probided m ≥W , and

VCdim(H) ≤ (Wk)2 + 11Wk log2(18Wk2).



I Theorem 8.14 Let h be a function from Rd × Rn to {0, 1}, determining the class

H = {x 7→ h(a, x) : a ∈ Rd}.

Suppose that h can be computed by an algorithm that takes as input the pair
(a, x) ∈ Rd × Rn and returns h(a, x) after no more than t of the following
oprations:

I the exponential function α 7→ eα on real numbers,
I the arithmetic operations +,−,×, and / on real numbers,
I jumps conditioned on >,≥, <,≤,=, and 6= comparisions of real numbers, and
I output 0 or 1.

Then VCdim(H) ≤ t2d(d + 19 log 2(9d)). Furthermore, if the t steps include no
more than q in which the exponential function is evaluated, then

ΠH(m) ≤ 2(d(q+1))2/2(9d(q + 1)2t)5d(q+1)
( em(2t − 2)

d

)d
,

and hence VCdim(H) ≤ (d(q + 1))2 + 11d(q + 1)(t + log2(9d(q + 1))).



Proof of VC-dimension bounds for sigmoid networks and algorithms

I Lemma 8.15 Let f1, . . . , fq be fixed affine functions of a1, . . . , ad , and let G be
the class of polynomials in a1, . . . , ad , e

f1(a), . . . , efq(a) of degree no more than l .
Then G has solution set components bound

B = 2q(q−1)/2(l + 1)2d+q(d + 1)d+2q .

I Lemma 8.16 Suppose G is the class of functions defined on Rd computed by a
circuit satisfying the following conditions: the circuit contains q gates, the output
gate computes a rational function of degree no more than l ≥ 1, each non-output
gate computes the exponential function of a rational function of degree no more
than l , and the denominator of each rational function is never zero. Then G has

solution set components bound 2(qd)2/2(9qdl)5qd .
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9.2 Large Margin Classifiers

I Suppose F is a class of functions defined on the set X and mapping to the
interval [0, 1].

I Definition 9.1 Let Z = X × {0, 1}. If f is a real-valued function in F , the margin
of f on (x , y) ∈ Z is

margin(f (x), y) =

{
f (x)− 1/2 if y = 1

1/2− f (x) otherwise.

Suppose γ is a nonnegative real number and P is a probability distribution on Z .
We define the error erγP (f ) of f w.r.t. P and γ as the probability

erγP (f ) = P{margin(f (x), y) < γ},

and the misclassification probability of f as

erP(f ) = P{sgn(f (x)− 1/2) 6= y}.



I Definition 9.2 A classification learning algorithm L for F takes as input a margin
parameter γ > 0 and a sample z ∈

⋃∞
i=1 Z

i , and returns a function in F s.t., for
any ε, δ ∈ (0, 1) and any γ > 0, there is an integer m0(ε, δ, γ) s.t. if
m ≥ m0(ε, δ, γ) then, for any probability distribution P on Z = X × {0, 1},

Pm
{
erP(L(γ, z)) < inf

g∈F
erγP (g) + ε

}
≥ 1− δ.

I Sample error of f w.r.t. γ on the sample z :

êrγz (f ) =
1

m
|{i : margin(f (xi ), yi ) < γ}|



I Proposition 9.3 For any function f : X → R and any sequence of labelled
examples ((x1, y1), . . . , (xm, ym)) in (X × {0, 1})m, if

1

m

m∑
i=1

(f (xi )− yi )
2 < ε

then
êrγz (f ) < ε/(1/2− γ)2

for all 0 ≤ γ < 1/2.
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10.2 Covering Numbers

I Recall that the growth function

ΠH(m) = max{
∣∣H|S ∣∣ : S ⊆ X and |S | = m}.

I Since H maps into {0,1},
∣∣H|S ∣∣ is finite for every finte S. Howevere, if F is a class

of real-valued functions,
∣∣F|S ∣∣ may be infinite.

I Use the notion of covers to measure the ’extent’ of F|S



10.2 Covering Numbers

- Covering numbers for subsets of Euclidean space

I Definition Given W ⊆ Rk and a positive real number ε, we say that C ⊆ Rk is a
d∞ ε - cover for W if C ⊆W and for every w ∈W there is a v ∈ C such that

max{|wi − vi | : i = 1, . . . , k} < ε

I Definition We could also define an ε-cover for W⊆ Rk as a subset C of W for
which W is contained in the union of the set of open d∞ ball of radius ε centred
at the points in C.

I Definition The d∞ ε-covering number of W, N (ε,W , d∞), to be the minimum
cardinality of a d∞ ε-cover for W.



10.2 Covering Numbers

- Uniform covering numbers for a function class

I Definition Suppose that F is a class of functions from X to R. Given a sequence
x = (x1, x2, . . . , xk ) ∈ X k , we let F|x be the subset of Rk given by

F|x = {(f (x1), f (x2), . . . , f (xk )) : f ∈ F}

I Definition For a positive number ε, we define the uniform covering number
N∞(ε,F , k) to be the maximum, over all x ∈ X k , of the covering number
N (ε,F|x , d∞) that is,

N∞(ε,F , k) = max{N (ε,F|x , d∞) : x ∈ X k}

I The uniform covering number is a generalization of the growth function. Suppose
that functions in H map into {0, 1}. Then for all x ∈ X k ,H|x is finite and, for all

x ∈ X k ,H|x is finite and, for all ε < 1, N (ε,F|x , d∞) : x ∈ X k =
∣∣H|x ∣∣, so

N∞(ε,F , k) = ΠH(m)



10.3 A Uniform Convergence Results

I Theorem 10.1 Suppose that F is a set of real-valued functions defined on the
domain X. Let P be any probability distribution on Z = X ×{0, 1}, ε any real
number between 0 and 1, γ any positive real number, and m any positive integer.
Then,

Pm{erp(f ) ≥ êrγz (f ) + ε for some f in F} ≤ 2N∞(γ/2,F , 2m)exp(−ε2m/8)



10.3 A Uniform Convergence Results

I Symmetrization : bound the desired probability in terms of the probability of an
event based on two samples.

I Lemma 10.2 With the notation as above, let

Q = {z ∈ Zm : some f in F has erP(f ) ≥ êrγz (f ) + ε}

and

R = {(r , s) ∈ Zm × Zm : some f in F has êr s(f ) ≥ êrγr (f ) + ε/2}

Then for m ≥ 2/ε2,
Pm(Q) ≤ 2P2m(R)

.



10.3 A Uniform Convergence Results

I Permutations : involving a set of permutations on the labels of th double sample.

I Let Γm be the set of all permutations of {1, 2, . . . , 2m} taht swap i and m+i. For
instance, σ ∈ Γ3 might give

σ(z1, z2, . . . , z6) = (z1, z5, z6, z4, z2, z3).

I Using Lemma 4.5 we can get

P2m(R) = EPr(σz ∈ R) ≤ max
z∈Z2m

Pr(σz ∈ R)



10.3 A Uniform Convergence Results

I Lemma 10.3 For the set R ⊆ Z2m defined in Lemma 10.2, and for a permutation
σ chosen uniformly at random from γm

max
z∈Z2m

Pr(σz ∈ R) ≤ N∞(γ/2,F , 2m)exp(−ε2m/8)

I (proof) Fix a minimal γ/2-cover T of F|x . Then for all f in F there is an f̂ in T

with
∣∣∣f (xi )− f̂i

∣∣∣ < γ/2 for 1 ≤ i ≤ 2m. Define v(f̂ , i) = I (margine(f̂i , yi ) < γ/2)

and use Hoeffding’s inequality.



10.3 A Uniform Convergence Results

I When the set {f (x) : f ∈ F} ⊂ R is unbounded, then N∞(γ/2,F , 1) =∞ for all
γ > 0

I Consider πγ : R→ [1/2− γ, 1/2 + γ] satisfies

πγ(α) =


1/2 + γ if α ≥ 1/2 + γ

1/2− γ if α ≤ 1/2 + γ

α if otherwise

I Theorem 10.4 Suppose that F is a set of real-valued functions defined on a
domain X. Let P be any probability distribution on Z = X ×{0, 1}, ε nay real
number between 0 and 1, γ any positive real number, and m any positive integer.
Then,

Pm{erp(f ) ≥ êrγz (f ) + ε for some f in F} ≤ 2N∞(γ/2, πγ(F ), 2m)exp(−ε2m/8)



10.4 Covering Numbers in General

I Recall that a metric space consists of a set A together with a metric, d, a
mapping from A × A to the nonnegative reals with the following properties, for
all x , y , x ∈ A : (i) d(x,y) = 0 if and only if x=y (ii) d(x,y)=d(y,x), and (iii)
d(x,z) ≤ d(x,y)+d(y,z)

I As same way, we can define the ε-covering number of W, N(ε,W , d), to be the
minimum cardinality of an ε-cover for W with respect to the metric d.

I Lemma 10.5 For any class F of real-valued functions defined on X, any ε > 0, and
any k ∈ N,

N1(ε,F , k) ≤ N2(ε,F , k) ≤ N∞(ε,F , k)



10.5 Remark

I Pseudo-metric : A pseudo-metric d satisfies the second and third conditions in the
definition of a metric, but the first condition does not necessarily hold. Instead,
d(x,y) ≥ for all x,y and d(x,x)=0, but we can have x6=y and d(x,y)=0.

I Improper coverings : if (A, d) is a metric space and W⊆A, then, for ε > 0, we say
that C⊆A is an ε-cover of W if C⊆W and for every w ∈W there is a v ∈ C such
that d(w , v) < ε. If we drop the requirement that C ⊆W then we say that C is
an improper cover.

I Lemma 10.6 Suppose that W is a totally bounded subset of a metric space (A,d).
For ε > 0, let N ′(ε,W , d) be the minimum cardinality of a finite improper
ε-cover for W. Then,

N (2ε,W , d) ≤ N ′(ε,W , d) ≤ N (ε,W , d)

for all ε > 0
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11.2 The Pseudo-Dimension

I Recall that a subset S={x1, x2, . . . , xm} of X is shattered by H if H|S has
cardinality 2m. This means that for any binary vector
b = (b1, b2, . . . , bm) ∈ {0, 1}m, there is some corresponding function hb in H
such that

(hb(x1), hb(x2), . . . , hb(xm)) = b

I Definition 11.1 Let F be a set of functions mapping from a domain X to R and
suppose that S = {x1, x2, . . . , xm} ⊆ X . Then S is pseudo-shattered by F if there
are real number r1, r2, . . . , rm such that for each b ∈ {0, 1}m there is a function fb
in F with sgn(fb(xi )− ri ) = bi for 1 ≤ i ≤ m. We say that r = (r1, r2, . . . , rm)
witnesses the shattering.



11.2 The Pseudo-Dimension

I Definition 11.2 Suppose that F is a set of functions from a domain X to R. Then
F has pseudo-dimension d if d is the maximum cardinality of a subset S of X that
is pseudo-shattered by F. I f no such maximum exists, we say that F has infinite
pseudo=dimension. The pseudo-dimension of F is denoted Pdim(F).



11.2 The Pseudo-Dimension

I Theorem 11.3 Suppose F is a class of real-valued functions and σ : R→ R is a
non-decreasing function. Let σ(F ) donote the class {σ ◦ f : f ∈ F}. Then
Pdim(σ(F )) ≤ Pdim(F ).

I Theorem 11.4 If F is a vector space of real-valued functions then
Pdim(F)=dim(F)

I (proof) Use theorem 3.5 : H={sgn(f + g) : f ∈ F} Then VCdim(H)=dim(F) and
Pdim(F) = VCdim(BF ) where BF = {(x , y) 7→ sgn(f (x)− y) : f ∈ F}

I Corollary 11.5 If F is a subset of a vector space F’ of real-valued functions then
Pdim(F ) ≤ dim(F ′)



11.2 The Pseudo-Dimension

I Suppose that F is the class of affine combinations of n real inputs of the form

f (x) = w0 +
n∑

i=1

wixi ,

where wi ∈ R and x = (x1, x2, . . . , xn) ∈ Rn is the input pattern. We can think of
F as the class of functions computable by a linear computation unit, which has
the identity function as its activation function.

I Theorem 11.6 Let F be the class of real functions computable by a linear
computation unit on Rn. Then Pdim(F)=n+1.

I (proof) F is a vector space. B={f1, f2, . . . , fn, 1} is a basis of F wherefi (x) = xi
and 1 denotes the identically-1 function.

I Theorem 11.7 Let F be the class of real functions computable by a linear
computation unit on {0, 1}n. Then Pdim(F)=n+1



11.2 The Pseudo-Dimension

I Consider the class of polynomial transformations. A polynomial transformation of
Rn is a function of the form

f (x) = w0 + w1φ1(x) + w2φ2(x) + . . .+ wlφl (x)

where φi (x) =
∏n

j=1 x
rij
i for some nonnegative integers rij

I The degree of φi is ri1 + ri2 + . . .+ rin.

I for instance, the polynomial transformations of degree at most two on R3 are the
functions of the form

f (x) = w0 +w1x1 +w2x2 +w3x3 +w4x
2
1 +w5x

2
2 +w6x

2
3 +w7x1x2 +w8x1x3 +w9x2x3.

I Theorem 11.8 Let F be the class of all polynomial transformations on Rn of
degree at most k. Then

Pdim(F ) =
(n + k

k

)



11.2 The Pseudo-Dimension

I (proof) F is a vector space. Let [n] denote {1, 2, . . . , n} and denote by [n]k the
set of all selections of at most k objects from [n] where repetition is allowd.
φT (x) =

∏
i∈T xi We can state that

f (x) =
∑

T∈[n]k

wTφ
T (x)

Define B(n,k)={φT : T ∈ [n]k} and show that this set is linearly independent.

I Theorem 11.9 Let F be the class of all polynomial transformations on {0, 1}n of
degree at most k. Then,

Pdim(F ) =
k∑

i=0

(n
i

)
.



11.3 The Fat-Shattering Dimension

I Definition 11.10 Let F be a set of functions mapping from a domain X to R and
suppose that S = {x1, x2, . . . , xm} ⊆ X . Suppose also that γ is a positive real
number. Then S is γ-shattered by F if there are real numbers r1, r2, . . . , rm such
that for each b ∈ {0, 1}m there is a function fb in F with

fb(xi ) ≥ ri + γ if bi = 1, and fb(xi ) ≤ ri − γ if bi = 0, for1 ≤ i ≤ m.

I Definition 11.11 Suppose that F is a set of functions from a domain X to R and
that γ > 0. Then F has γ-dimension d if d is the maximum cardinality of a subset
S of X that is γ-shattered by F. If no such maximum exists, we say that F has
infinite γ-dimension. The γ-dimension of F is denoted fatF (γ).



11.3 The Fat-Shattering Dimension

I f : [0, 1]→ R is of bounded variation if there is V such that for every integer n
and every sequence y1, y2, . . . , yn of numbers with 0 ≤ y1 < y2 < . . . < yn ≤ 1,
we have

n−1∑
i=1

|f (yi+1)− f (yi )| ≤ V

In this case, we say that f has total variation at most V.

I Theorem 11.12 Let F be the set of all functions mapping from the interval [0,1]
to the interval [0,1] and having total variation at most V. Then,

fatF (γ) = 1 +

⌊
V

2γ

⌋



11.3 The Fat-Shattering Dimension

I Theorem 11.13 Suppose that F is a set of real-valued functions. Then,
(i) For all γ > 0, fatF (γ) ≤ Pdim(F ).
(ii) If a finite set S is pseudo-shattered then there is γ0 such that for all γ < γ0, S
is γ-shattered.
(iii) The function fatF is non-increasing with γ
(iv) Pdim(F ) = limγ↓0 fatF (γ) (where both sides may be infinite).

I Theorem 11.14 Suppose that a set F of real-valued functions is closed under
scalar multiplication. Then, for all positive γ,

fatF (γ) = Pdim(F ).

In particular, F has finite fat-shattering dimension if and only if it has finite
pseudo-dimension.
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